Paper Reading AI Learner

Feature-rich multiplex lexical networks reveal mental strategies of early language learning

2022-01-13 16:44:51
Salvatore Citraro, Michael S. Vitevitch, Massimo Stella, Giulio Rossetti

Abstract

Knowledge in the human mind exhibits a dualistic vector/network nature. Modelling words as vectors is key to natural language processing, whereas networks of word associations can map the nature of semantic memory. We reconcile these paradigms - fragmented across linguistics, psychology and computer science - by introducing FEature-Rich MUltiplex LEXical (FERMULEX) networks. This novel framework merges structural similarities in networks and vector features of words, which can be combined or explored independently. Similarities model heterogenous word associations across semantic/syntactic/phonological aspects of knowledge. Words are enriched with multi-dimensional feature embeddings including frequency, age of acquisition, length and polysemy. These aspects enable unprecedented explorations of cognitive knowledge. Through CHILDES data, we use FERMULEX networks to model normative language acquisition by 1000 toddlers between 18 and 30 months. Similarities and embeddings capture word homophily via conformity, which measures assortative mixing via distance and features. Conformity unearths a language kernel of frequent/polysemous/short nouns and verbs key for basic sentence production, supporting recent evidence of children's syntactic constructs emerging at 30 months. This kernel is invisible to network core-detection and feature-only clustering: It emerges from the dual vector/network nature of words. Our quantitative analysis reveals two key strategies in early word learning. Modelling word acquisition as random walks on FERMULEX topology, we highlight non-uniform filling of communicative developmental inventories (CDIs). Conformity-based walkers lead to accurate (75%), precise (55%) and partially well-recalled (34%) predictions of early word learning in CDIs, providing quantitative support to previous empirical findings and developmental theories.

Abstract (translated)

URL

https://arxiv.org/abs/2201.05061

PDF

https://arxiv.org/pdf/2201.05061.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot