Paper Reading AI Learner

Autoencoding Video Latents for Adversarial Video Generation

2022-01-18 11:42:14
Sai Hemanth Kasaraneni

Abstract

Given the three dimensional complexity of a video signal, training a robust and diverse GAN based video generative model is onerous due to large stochasticity involved in data space. Learning disentangled representations of the data help to improve robustness and provide control in the sampling process. For video generation, there is a recent progress in this area by considering motion and appearance as orthogonal information and designing architectures that efficiently disentangle them. These approaches rely on handcrafting architectures that impose structural priors on the generator to decompose appearance and motion codes in the latent space. Inspired from the recent advancements in the autoencoder based image generation, we present AVLAE (Adversarial Video Latent AutoEncoder) which is a two stream latent autoencoder where the video distribution is learned by adversarial training. In particular, we propose to autoencode the motion and appearance latent vectors of the video generator in the adversarial setting. We demonstrate that our approach learns to disentangle motion and appearance codes even without the explicit structural composition in the generator. Several experiments with qualitative and quantitative results demonstrate the effectiveness of our method.

Abstract (translated)

URL

https://arxiv.org/abs/2201.06888

PDF

https://arxiv.org/pdf/2201.06888.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot