Paper Reading AI Learner

SUD: Supervision by Denoising for Medical Image Segmentation

2022-02-07 05:29:16
Sean I. Young, Adrian V. Dalca, Enzo Ferrante, Polina Golland, Bruce Fischl, Juan Eugenio Iglesias

Abstract

Training a fully convolutional network for semantic segmentation typically requires a large, labeled dataset with little label noise if good generalization is to be guaranteed. For many segmentation problems, however, data with pixel- or voxel-level labeling accuracy are scarce due to the cost of manual labeling. This problem is exacerbated in domains where manual annotation is difficult, resulting in large amounts of variability in the labeling even across domain experts. Therefore, training segmentation networks to generalize better by learning from both labeled and unlabeled images (called semi-supervised learning) is problem of both practical and theoretical interest. However, traditional semi-supervised learning methods for segmentation often necessitate hand-crafting a differentiable regularizer specific to a given segmentation problem, which can be extremely time-consuming. In this work, we propose "supervision by denoising" (SUD), a framework that enables us to supervise segmentation models using their denoised output as targets. SUD unifies temporal ensembling and spatial denoising techniques under a spatio-temporal denoising framework and alternates denoising and network weight update in an optimization framework for semi-supervision. We validate SUD on three tasks-kidney and tumor (3D), and brain (3D) segmentation, and cortical parcellation (2D)-demonstrating a significant improvement in the Dice overlap and the Hausdorff distance of segmentations over supervised-only and temporal ensemble baselines.

Abstract (translated)

URL

https://arxiv.org/abs/2202.02952

PDF

https://arxiv.org/pdf/2202.02952.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot