Paper Reading AI Learner

Self-Evolutionary Clustering

2022-02-21 19:38:18
Hanxuan Wang, Na Lu, Qinyang Liu

Abstract

Deep clustering outperforms conventional clustering by mutually promoting representation learning and cluster assignment. However, most existing deep clustering methods suffer from two major drawbacks. First, most cluster assignment methods are based on simple distance comparison and highly dependent on the target distribution generated by a handcrafted nonlinear mapping. These facts largely limit the possible performance that deep clustering methods can reach. Second, the clustering results can be easily guided towards wrong direction by the misassigned samples in each cluster. The existing deep clustering methods are incapable of discriminating such samples. To address these issues, a novel modular Self-Evolutionary Clustering (Self-EvoC) framework is constructed, which boosts the clustering performance by classification in a self-supervised manner. Fuzzy theory is used to score the sample membership with probability which evaluates the intermediate clustering result certainty of each sample. Based on which, the most reliable samples can be selected and augmented. The augmented data are employed to fine-tune an off-the-shelf deep network classifier with the labels from the clustering, which results in a model to generate the target distribution. The proposed framework can efficiently discriminate sample outliers and generate better target distribution with the assistance of self-supervised classifier. Extensive experiments indicate that the Self-EvoC remarkably outperforms state-of-the-art deep clustering methods on three benchmark datasets.

Abstract (translated)

URL

https://arxiv.org/abs/2202.10505

PDF

https://arxiv.org/pdf/2202.10505.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot