Paper Reading AI Learner

PartAfford: Part-level Affordance Discovery from 3D Objects

2022-02-28 02:58:36
Chao Xu, Yixin Chen, He Wang, Song-Chun Zhu, Yixin Zhu, Siyuan Huang

Abstract

Understanding what objects could furnish for humans-namely, learning object affordance-is the crux to bridge perception and action. In the vision community, prior work primarily focuses on learning object affordance with dense (e.g., at a per-pixel level) supervision. In stark contrast, we humans learn the object affordance without dense labels. As such, the fundamental question to devise a computational model is: What is the natural way to learn the object affordance from visual appearance and geometry with humanlike sparse supervision? In this work, we present a new task of part-level affordance discovery (PartAfford): Given only the affordance labels per object, the machine is tasked to (i) decompose 3D shapes into parts and (ii) discover how each part of the object corresponds to a certain affordance category. We propose a novel learning framework for PartAfford, which discovers part-level representations by leveraging only the affordance set supervision and geometric primitive regularization, without dense supervision. The proposed approach consists of two main components: (i) an abstraction encoder with slot attention for unsupervised clustering and abstraction, and (ii) an affordance decoder with branches for part reconstruction, affordance prediction, and cuboidal primitive regularization. To learn and evaluate PartAfford, we construct a part-level, cross-category 3D object affordance dataset, annotated with 24 affordance categories shared among >25, 000 objects. We demonstrate that our method enables both the abstraction of 3D objects and part-level affordance discovery, with generalizability to difficult and cross-category examples. Further ablations reveal the contribution of each component.

Abstract (translated)

URL

https://arxiv.org/abs/2202.13519

PDF

https://arxiv.org/pdf/2202.13519.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot