Paper Reading AI Learner

Neural Network Training on In-memory-computing Hardware with Radix-4 Gradients

2022-03-09 15:53:07
Christopher Grimm, Naveen Verma

Abstract

Deep learning training involves a large number of operations, which are dominated by high dimensionality Matrix-Vector Multiplies (MVMs). This has motivated hardware accelerators to enhance compute efficiency, but where data movement and accessing are proving to be key bottlenecks. In-Memory Computing (IMC) is an approach with the potential to overcome this, whereby computations are performed in-place within dense 2-D memory. However, IMC fundamentally trades efficiency and throughput gains for dynamic-range limitations, raising distinct challenges for training, where compute precision requirements are seen to be substantially higher than for inferencing. This paper explores training on IMC hardware by leveraging two recent developments: (1) a training algorithm enabling aggressive quantization through a radix-4 number representation; (2) IMC leveraging compute based on precision capacitors, whereby analog noise effects can be made well below quantization effects. Energy modeling calibrated to a measured silicon prototype implemented in 16nm CMOS shows that energy savings of over 400x can be achieved with full quantizer adaptability, where all training MVMs can be mapped to IMC, and 3x can be achieved for two-level quantizer adaptability, where two of the three training MVMs can be mapped to IMC.

Abstract (translated)

URL

https://arxiv.org/abs/2203.04821

PDF

https://arxiv.org/pdf/2203.04821.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot