Paper Reading AI Learner

Using the Order of Tomographic Slices as a Prior for Neural Networks Pre-Training

2022-03-17 14:58:15
Yaroslav Zharov, Alexey Ershov, Tilo Baumbach, Vincent Heuveline

Abstract

The technical advances in Computed Tomography (CT) allow to obtain immense amounts of 3D data. For such datasets it is very costly and time-consuming to obtain the accurate 3D segmentation markup to train neural networks. The annotation is typically done for a limited number of 2D slices, followed by an interpolation. In this work, we propose a pre-training method SortingLoss. It performs pre-training on slices instead of volumes, so that a model could be fine-tuned on a sparse set of slices, without the interpolation step. Unlike general methods (e.g. SimCLR or Barlow Twins), the task specific methods (e.g. Transferable Visual Words) trade broad applicability for quality benefits by imposing stronger assumptions on the input data. We propose a relatively mild assumption -- if we take several slices along some axis of a volume, structure of the sample presented on those slices, should give a strong clue to reconstruct the correct order of those slices along the axis. Many biomedical datasets fulfill this requirement due to the specific anatomy of a sample and pre-defined alignment of the imaging setup. We examine the proposed method on two datasets: medical CT of lungs affected by COVID-19 disease, and high-resolution synchrotron-based full-body CT of model organisms (Medaka fish). We show that the proposed method performs on par with SimCLR, while working 2x faster and requiring 1.5x less memory. In addition, we present the benefits in terms of practical scenarios, especially the applicability to the pre-training of large models and the ability to localize samples within volumes in an unsupervised setup.

Abstract (translated)

URL

https://arxiv.org/abs/2203.09372

PDF

https://arxiv.org/pdf/2203.09372.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot