Paper Reading AI Learner

Decoupled Mixup for Data-efficient Learning

2022-03-21 07:12:18
Zicheng Liu, Siyuan Li, Ge Wang, Cheng Tan, Lirong Wu, Stan Z. Li

Abstract

Mixup is an efficient data augmentation approach that improves the generalization of neural networks by smoothing the decision boundary with mixed data. Recently, dynamic mixup methods improve previous static policies (e.g., linear interpolation) by maximizing discriminative regions or maintaining the salient objects in mixed samples. We notice that The mixed samples from dynamic policies are more separable than the static ones while preventing models from overfitting. Inspired by this finding, we first argue that there exists an over-smoothing issue in the mixup objective, which focuses on regression the mixing ratio instead of identifying discriminative features. We are therefore prompted to propose a decoupled mixup (DM) loss that can adaptively mine discriminative features without losing smoothness. DM enables static mixup methods to achieve comparable performance with dynamic methods while avoiding heavy computational overhead. This also leads to an interesting objective design problem for mixup training that we need to focus not only on smoothing the decision boundaries but also on identifying discriminative features. Extensive experiments on supervised and semi-supervised learning benchmarks across seven classification datasets validate the effectiveness of DM by equipping with various mixup methods.

Abstract (translated)

URL

https://arxiv.org/abs/2203.10761

PDF

https://arxiv.org/pdf/2203.10761.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model LLM Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Robot Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot