Paper Reading AI Learner

Mask Usage Recognition using Vision Transformer with Transfer Learning and Data Augmentation

2022-03-22 08:50:41
Hensel Donato Jahja, Novanto Yudistira, Sutrisno

Abstract

The COVID-19 pandemic has disrupted various levels of society. The use of masks is essential in preventing the spread of COVID-19 by identifying an image of a person using a mask. Although only 23.1% of people use masks correctly, Artificial Neural Networks (ANN) can help classify the use of good masks to help slow the spread of the Covid-19 virus. However, it requires a large dataset to train an ANN that can classify the use of masks correctly. MaskedFace-Net is a suitable dataset consisting of 137016 digital images with 4 class labels, namely Mask, Mask Chin, Mask Mouth Chin, and Mask Nose Mouth. Mask classification training utilizes Vision Transformers (ViT) architecture with transfer learning method using pre-trained weights on ImageNet-21k, with random augmentation. In addition, the hyper-parameters of training of 20 epochs, an Stochastic Gradient Descent (SGD) optimizer with a learning rate of 0.03, a batch size of 64, a Gaussian Cumulative Distribution (GeLU) activation function, and a Cross-Entropy loss function are used to be applied on the training of three architectures of ViT, namely Base-16, Large-16, and Huge-14. Furthermore, comparisons of with and without augmentation and transfer learning are conducted. This study found that the best classification is transfer learning and augmentation using ViT Huge-14. Using this method on MaskedFace-Net dataset, the research reaches an accuracy of 0.9601 on training data, 0.9412 on validation data, and 0.9534 on test data. This research shows that training the ViT model with data augmentation and transfer learning improves classification of the mask usage, even better than convolutional-based Residual Network (ResNet).

Abstract (translated)

URL

https://arxiv.org/abs/2203.11542

PDF

https://arxiv.org/pdf/2203.11542.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot