Paper Reading AI Learner

Focal Modulation Networks

2022-03-22 17:54:50
Jianwei Yang, Chunyuan Li, Jianfeng Gao

Abstract

In this work, we propose focal modulation network (FocalNet in short), where self-attention (SA) is completely replaced by a focal modulation module that is more effective and efficient for modeling token interactions. Focal modulation comprises three components: $(i)$ hierarchical contextualization, implemented using a stack of depth-wise convolutional layers, to encode visual contexts from short to long ranges at different granularity levels, $(ii)$ gated aggregation to selectively aggregate context features for each visual token (query) based on its content, and $(iii)$ modulation or element-wise affine transformation to fuse the aggregated features into the query vector. Extensive experiments show that FocalNets outperform the state-of-the-art SA counterparts (e.g., Swin Transformers) with similar time and memory cost on the tasks of image classification, object detection, and semantic segmentation. Specifically, our FocalNets with tiny and base sizes achieve 82.3% and 83.9% top-1 accuracy on ImageNet-1K. After pretrained on ImageNet-22K, it attains 86.5% and 87.3% top-1 accuracy when finetuned with resolution 224$\times$224 and 384$\times$384, respectively. FocalNets exhibit remarkable superiority when transferred to downstream tasks. For object detection with Mask R-CNN, our FocalNet base trained with 1$\times$ already surpasses Swin trained with 3$\times$ schedule (49.0 v.s. 48.5). For semantic segmentation with UperNet, FocalNet base evaluated at single-scale outperforms Swin evaluated at multi-scale (50.5 v.s. 49.7). These results render focal modulation a favorable alternative to SA for effective and efficient visual modeling in real-world applications. Code is available at this https URL.

Abstract (translated)

URL

https://arxiv.org/abs/2203.11926

PDF

https://arxiv.org/pdf/2203.11926.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot