Paper Reading AI Learner

Interpretation of Chest x-rays affected by bullets using deep transfer learning

2022-03-25 05:53:45
Shaheer Khan, Azib Farooq, Israr Khan, Muhammad Gulraiz Khan, Abdul Razzaq

Abstract

The potential of deep learning, especially in medical imaging, initiated astonishing results and improved the methodologies after every passing day. Deep learning in radiology provides the opportunity to classify, detect and segment different diseases automatically. In the proposed study, we worked on a non-trivial aspect of medical imaging where we classified and localized the X-Rays affected by bullets. We tested Images on different classification and localization models to get considerable accuracy. The replicated data set used in the study was replicated on different images of chest X-Rays. The proposed model worked not only on chest radiographs but other body organs X-rays like leg, abdomen, head, even the training dataset based on chest radiographs. Custom models have been used for classification and localization purposes after tuning parameters. Finally, the results of our findings manifested using different frameworks. This might assist the research enlightening towards this field. To the best of our knowledge, this is the first study on the detection and classification of radiographs affected by bullets using deep learning.

Abstract (translated)

URL

https://arxiv.org/abs/2203.13461

PDF

https://arxiv.org/pdf/2203.13461.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot