Paper Reading AI Learner

A Survey of Robust Adversarial Training in Pattern Recognition: Fundamental, Theory, and Methodologies

2022-03-26 11:00:25
Zhuang Qian, Kaizhu Huang, Qiu-Feng Wang, Xu-Yao Zhang

Abstract

In the last a few decades, deep neural networks have achieved remarkable success in machine learning, computer vision, and pattern recognition. Recent studies however show that neural networks (both shallow and deep) may be easily fooled by certain imperceptibly perturbed input samples called adversarial examples. Such security vulnerability has resulted in a large body of research in recent years because real-world threats could be introduced due to vast applications of neural networks. To address the robustness issue to adversarial examples particularly in pattern recognition, robust adversarial training has become one mainstream. Various ideas, methods, and applications have boomed in the field. Yet, a deep understanding of adversarial training including characteristics, interpretations, theories, and connections among different models has still remained elusive. In this paper, we present a comprehensive survey trying to offer a systematic and structured investigation on robust adversarial training in pattern recognition. We start with fundamentals including definition, notations, and properties of adversarial examples. We then introduce a unified theoretical framework for defending against adversarial samples - robust adversarial training with visualizations and interpretations on why adversarial training can lead to model robustness. Connections will be also established between adversarial training and other traditional learning theories. After that, we summarize, review, and discuss various methodologies with adversarial attack and defense/training algorithms in a structured way. Finally, we present analysis, outlook, and remarks of adversarial training.

Abstract (translated)

URL

https://arxiv.org/abs/2203.14046

PDF

https://arxiv.org/pdf/2203.14046.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model LLM Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Robot Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot