Paper Reading AI Learner

Are High-Resolution Event Cameras Really Needed?

2022-03-28 12:06:20
Daniel Gehrig, Davide Scaramuzza

Abstract

Due to their outstanding properties in challenging conditions, event cameras have become indispensable in a wide range of applications, ranging from automotive, computational photography, and SLAM. However, as further improvements are made to the sensor design, modern event cameras are trending toward higher and higher sensor resolutions, which result in higher bandwidth and computational requirements on downstream tasks. Despite this trend, the benefits of using high-resolution event cameras to solve standard computer vision tasks are still not clear. In this work, we report the surprising discovery that, in low-illumination conditions and at high speeds, low-resolution cameras can outperform high-resolution ones, while requiring a significantly lower bandwidth. We provide both empirical and theoretical evidence for this claim, which indicates that high-resolution event cameras exhibit higher per-pixel event rates, leading to higher temporal noise in low-illumination conditions and at high speeds. As a result, in most cases, high-resolution event cameras show a lower task performance, compared to lower resolution sensors in these conditions. We empirically validate our findings across several tasks, namely image reconstruction, optical flow estimation, and camera pose tracking, both on synthetic and real data. We believe that these findings will provide important guidelines for future trends in event camera development.

Abstract (translated)

URL

https://arxiv.org/abs/2203.14672

PDF

https://arxiv.org/pdf/2203.14672.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot