Paper Reading AI Learner

Position-based Prompting for Health Outcome Generation

2022-03-30 16:44:04
M. Abaho, D. Bollegala, P. Williamson, S. Dodd

Abstract

Probing Pre-trained Language Models (PLMs) using prompts has indirectly implied that language models (LMs) can be treated as knowledge bases. To this end, this phenomena has been effective especially when these LMs are fine-tuned towards not just data of a specific domain, but also to the style or linguistic pattern of the prompts themselves. We observe that, satisfying a particular linguistic pattern in prompts is an unsustainable constraint that unnecessarily lengthens the probing task, especially because, they are often manually designed and the range of possible prompt template patterns can vary depending on the prompting objective and domain. We therefore explore an idea of using a position-attention mechanism to capture positional information of each word in a prompt relative to the mask to be filled, hence avoiding the need to re-construct prompts when the prompts linguistic pattern changes. Using our approach, we demonstrate the ability of eliciting answers to rare prompt templates (in a case study on health outcome generation) such as Postfix and Mixed patterns whose missing information is respectively at the start and in multiple random places of the prompt. More so, using various biomedical PLMs, our approach consistently outperforms a baseline in which the default mask language model (MLM) representation is used to predict masked tokens.

Abstract (translated)

URL

https://arxiv.org/abs/2204.03489

PDF

https://arxiv.org/pdf/2204.03489.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot