Paper Reading AI Learner

Koopman pose predictions for temporally consistent human walking estimations

2022-05-05 16:16:06
Marc Mitjans, David M. Levine, Louis N. Awad, Roberto Tron

Abstract

We tackle the problem of tracking the human lower body as an initial step toward an automatic motion assessment system for clinical mobility evaluation, using a multimodal system that combines Inertial Measurement Unit (IMU) data, RGB images, and point cloud depth measurements. This system applies the factor graph representation to an optimization problem that provides 3-D skeleton joint estimations. In this paper, we focus on improving the temporal consistency of the estimated human trajectories to greatly extend the range of operability of the depth sensor. More specifically, we introduce a new factor graph factor based on Koopman theory that embeds the nonlinear dynamics of several lower-limb movement activities. This factor performs a two-step process: first, a custom activity recognition module based on spatial temporal graph convolutional networks recognizes the walking activity; then, a Koopman pose prediction of the subsequent skeleton is used as an a priori estimation to drive the optimization problem toward more consistent results. We tested the performance of this module on datasets composed of multiple clinical lowerlimb mobility tests, and we show that our approach reduces outliers on the skeleton form by almost 1 m, while preserving natural walking trajectories at depths up to more than 10 m.

Abstract (translated)

URL

https://arxiv.org/abs/2205.02737

PDF

https://arxiv.org/pdf/2205.02737.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot