Paper Reading AI Learner

Bi-level Alignment for Cross-Domain Crowd Counting

2022-05-12 02:23:25
Shenjian Gong, Shanshan Zhang, Jian Yang, Dengxin Dai, Bernt Schiele

Abstract

Recently, crowd density estimation has received increasing attention. The main challenge for this task is to achieve high-quality manual annotations on a large amount of training data. To avoid reliance on such annotations, previous works apply unsupervised domain adaptation (UDA) techniques by transferring knowledge learned from easily accessible synthetic data to real-world datasets. However, current state-of-the-art methods either rely on external data for training an auxiliary task or apply an expensive coarse-to-fine estimation. In this work, we aim to develop a new adversarial learning based method, which is simple and efficient to apply. To reduce the domain gap between the synthetic and real data, we design a bi-level alignment framework (BLA) consisting of (1) task-driven data alignment and (2) fine-grained feature alignment. In contrast to previous domain augmentation methods, we introduce AutoML to search for an optimal transform on source, which well serves for the downstream task. On the other hand, we do fine-grained alignment for foreground and background separately to alleviate the alignment difficulty. We evaluate our approach on five real-world crowd counting benchmarks, where we outperform existing approaches by a large margin. Also, our approach is simple, easy to implement and efficient to apply. The code is publicly available at this https URL.

Abstract (translated)

URL

https://arxiv.org/abs/2205.05844

PDF

https://arxiv.org/pdf/2205.05844.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot