Paper Reading AI Learner

Semi-self-supervised Automated ICD Coding

2022-05-20 11:12:54
Hlynur D. Hlynsson, Steindór Ellertsson, Jón F. Daðason, Emil L. Sigurdsson, Hrafn Loftsson

Abstract

Clinical Text Notes (CTNs) contain physicians' reasoning process, written in an unstructured free text format, as they examine and interview patients. In recent years, several studies have been published that provide evidence for the utility of machine learning for predicting doctors' diagnoses from CTNs, a task known as ICD coding. Data annotation is time consuming, particularly when a degree of specialization is needed, as is the case for medical data. This paper presents a method of augmenting a sparsely annotated dataset of Icelandic CTNs with a machine-learned imputation in a semi-self-supervised manner. We train a neural network on a small set of annotated CTNs and use it to extract clinical features from a set of un-annotated CTNs. These clinical features consist of answers to about a thousand potential questions that a physician might find the answers to during a consultation of a patient. The features are then used to train a classifier for the diagnosis of certain types of diseases. We report the results of an evaluation of this data augmentation method over three tiers of data availability to the physician. Our data augmentation method shows a significant positive effect which is diminished when clinical features from the examination of the patient and diagnostics are made available. We recommend our method for augmenting scarce datasets for systems that take decisions based on clinical features that do not include examinations or tests.

Abstract (translated)

URL

https://arxiv.org/abs/2205.10088

PDF

https://arxiv.org/pdf/2205.10088.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot