Paper Reading AI Learner

People counting system for retail analytics using edge AI

2022-05-25 19:13:38
Karthik Reddy Kanjula, Vishnu Vardhan Reddy, Jnanesh K P, Jeffy S Abraham, Tanuja K

Abstract

Developments in IoT applications are playing an important role in our day-to-day life, starting from business predictions to self driving cars. One of the area, most influenced by the field of AI and IoT is retail analytics. In Retail Analytics, Conversion Rates - a metric which is most often used by retail stores to measure how many people have visited the store and how many purchases has happened. This retail conversion rate assess the marketing operations, increasing stock, store outlet and running promotions ..etc. Our project intends to build a cost-effective people counting system with AI at Edge, where it calculates Conversion rates using total number of people counted by the system and number of transactions for the day, which helps in providing analytical insights for retail store optimization with a very minimum hardware requirements.

Abstract (translated)

URL

https://arxiv.org/abs/2205.13020

PDF

https://arxiv.org/pdf/2205.13020.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot