Paper Reading AI Learner

Perceptual Learned Source-Channel Coding for High-Fidelity Image Semantic Transmission

2022-05-26 03:05:13
Jun Wang, Sixian Wang, Jincheng Dai, Zhongwei Si, Dekun Zhou, Kai Niu

Abstract

As one novel approach to realize end-to-end wireless image semantic transmission, deep learning-based joint source-channel coding (deep JSCC) method is emerging in both deep learning and communication communities. However, current deep JSCC image transmission systems are typically optimized for traditional distortion metrics such as peak signal-to-noise ratio (PSNR) or multi-scale structural similarity (MS-SSIM). But for low transmission rates, due to the imperfect wireless channel, these distortion metrics lose significance as they favor pixel-wise preservation. To account for human visual perception in semantic communications, it is of great importance to develop new deep JSCC systems optimized beyond traditional PSNR and MS-SSIM metrics. In this paper, we introduce adversarial losses to optimize deep JSCC, which tends to preserve global semantic information and local texture. Our new deep JSCC architecture combines encoder, wireless channel, decoder/generator, and discriminator, which are jointly learned under both perceptual and adversarial losses. Our method yields human visually much more pleasing results than state-of-the-art engineered image coded transmission systems and traditional deep JSCC systems. A user study confirms that achieving the perceptually similar end-to-end image transmission quality, the proposed method can save about 50\% wireless channel bandwidth cost.

Abstract (translated)

URL

https://arxiv.org/abs/2205.13120

PDF

https://arxiv.org/pdf/2205.13120.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot