Paper Reading AI Learner

EfficientViT: Enhanced Linear Attention for High-Resolution Low-Computation Visual Recognition

2022-05-29 20:07:23
Han Cai, Chuang Gan, Song Han

Abstract

Vision Transformer (ViT) has achieved remarkable performance in many vision tasks. However, ViT is inferior to convolutional neural networks (CNNs) when targeting high-resolution mobile vision applications. The key computational bottleneck of ViT is the softmax attention module which has quadratic computational complexity with the input resolution. It is essential to reduce the cost of ViT to deploy it on edge devices. Existing methods (e.g., Swin, PVT) restrict the softmax attention within local windows or reduce the resolution of key/value tensors to reduce the cost, which sacrifices ViT's core advantages on global feature extractions. In this work, we present EfficientViT, an efficient ViT architecture for high-resolution low-computation visual recognition. Instead of restricting the softmax attention, we propose to replace softmax attention with linear attention while enhancing its local feature extraction ability with depthwise convolution. EfficientViT maintains global and local feature extraction capability while enjoying linear computational complexity. Extensive experiments on COCO object detection and Cityscapes semantic segmentation demonstrate the effectiveness of our method. On the COCO dataset, EfficientViT achieves 42.6 AP with 4.4G MACs, surpassing EfficientDet-D1 by 2.4 AP while having 27.9% fewer MACs. On Cityscapes, EfficientViT reaches 78.7 mIoU with 19.1G MACs, outperforming SegFormer by 2.5 mIoU while requiring less than 1/3 the computational cost. On Qualcomm Snapdragon 855 CPU, EfficientViT is 3x faster than EfficientNet while achieving higher ImageNet accuracy.

Abstract (translated)

URL

https://arxiv.org/abs/2205.14756

PDF

https://arxiv.org/pdf/2205.14756.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot