Paper Reading AI Learner

Rethinking the Augmentation Module in Contrastive Learning: Learning Hierarchical Augmentation Invariance with Expanded Views

2022-06-01 04:30:46
Junbo Zhang, Kaisheng Ma

Abstract

A data augmentation module is utilized in contrastive learning to transform the given data example into two views, which is considered essential and irreplaceable. However, the predetermined composition of multiple data augmentations brings two drawbacks. First, the artificial choice of augmentation types brings specific representational invariances to the model, which have different degrees of positive and negative effects on different downstream tasks. Treating each type of augmentation equally during training makes the model learn non-optimal representations for various downstream tasks and limits the flexibility to choose augmentation types beforehand. Second, the strong data augmentations used in classic contrastive learning methods may bring too much invariance in some cases, and fine-grained information that is essential to some downstream tasks may be lost. This paper proposes a general method to alleviate these two problems by considering where and what to contrast in a general contrastive learning framework. We first propose to learn different augmentation invariances at different depths of the model according to the importance of each data augmentation instead of learning representational invariances evenly in the backbone. We then propose to expand the contrast content with augmentation embeddings to reduce the misleading effects of strong data augmentations. Experiments based on several baseline methods demonstrate that we learn better representations for various benchmarks on classification, detection, and segmentation downstream tasks.

Abstract (translated)

URL

https://arxiv.org/abs/2206.00227

PDF

https://arxiv.org/pdf/2206.00227.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot