Paper Reading AI Learner

An Improved Normed-Deformable Convolution for Crowd Counting

2022-06-16 10:56:26
Xin Zhong, Zhaoyi Yan, Jing Qin, Wangmeng Zuo, Weigang Lu

Abstract

In recent years, crowd counting has become an important issue in computer vision. In most methods, the density maps are generated by convolving with a Gaussian kernel from the ground-truth dot maps which are marked around the center of human heads. Due to the fixed geometric structures in CNNs and indistinct head-scale information, the head features are obtained incompletely. Deformable convolution is proposed to exploit the scale-adaptive capabilities for CNN features in the heads. By learning the coordinate offsets of the sampling points, it is tractable to improve the ability to adjust the receptive field. However, the heads are not uniformly covered by the sampling points in the deformable convolution, resulting in loss of head information. To handle the non-uniformed sampling, an improved Normed-Deformable Convolution (\textit{i.e.,}NDConv) implemented by Normed-Deformable loss (\textit{i.e.,}NDloss) is proposed in this paper. The offsets of the sampling points which are constrained by NDloss tend to be more even. Then, the features in the heads are obtained more completely, leading to better performance. Especially, the proposed NDConv is a light-weight module which shares similar computation burden with Deformable Convolution. In the extensive experiments, our method outperforms state-of-the-art methods on ShanghaiTech A, ShanghaiTech B, UCF\_QNRF, and UCF\_CC\_50 dataset, achieving 61.4, 7.8, 91.2, and 167.2 MAE, respectively. The code is available at this https URL

Abstract (translated)

URL

https://arxiv.org/abs/2206.08084

PDF

https://arxiv.org/pdf/2206.08084.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot