Paper Reading AI Learner

Understanding and Improving Group Normalization

2022-07-05 11:31:39
Agus Gunawan, Xu Yin, Kang Zhang

Abstract

Various normalization layers have been proposed to help the training of neural networks. Group Normalization (GN) is one of the effective and attractive studies that achieved significant performances in the visual recognition task. Despite the great success achieved, GN still has several issues that may negatively impact neural network training. In this paper, we introduce an analysis framework and discuss the working principles of GN in affecting the training process of the neural network. From experimental results, we conclude the real cause of GN's inferior performance against Batch normalization (BN): 1) \textbf{unstable training performance}, 2) \textbf{more sensitive} to distortion, whether it comes from external noise or perturbations introduced by the regularization. In addition, we found that GN can only help the neural network training in some specific period, unlike BN, which helps the network throughout the training. To solve these issues, we propose a new normalization layer built on top of GN, by incorporating the advantages of BN. Experimental results on the image classification task demonstrated that the proposed normalization layer outperforms the official GN to improve recognition accuracy regardless of the batch sizes and stabilize the network training.

Abstract (translated)

URL

https://arxiv.org/abs/2207.01972

PDF

https://arxiv.org/pdf/2207.01972.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot