Paper Reading AI Learner

IDAN: Image Difference Attention Network for Change Detection

2022-08-17 13:46:13
Hongkun Liu, Zican Hu, Qichen Ding, Xueyun Chen

Abstract

Remote sensing image change detection is of great importance in disaster assessment and urban planning. The mainstream method is to use encoder-decoder models to detect the change region of two input images. Since the change content of remote sensing images has the characteristics of wide scale range and variety, it is necessary to improve the detection accuracy of the network by increasing the attention mechanism, which commonly includes: Squeeze-and-Excitation block, Non-local and Convolutional Block Attention Module, among others. These methods consider the importance of different location features between channels or within channels, but fail to perceive the differences between input images. In this paper, we propose a novel image difference attention network (IDAN). In the image preprocessing stage, we use a pre-training model to extract the feature differences between two input images to obtain the feature difference map (FD-map), and Canny for edge detection to obtain the edge difference map (ED-map). In the image feature extracting stage, the FD-map and ED-map are input to the feature difference attention module and edge compensation module, respectively, to optimize the features extracted by IDAN. Finally, the change detection result is obtained through the feature difference operation. IDAN comprehensively considers the differences in regional and edge features of images and thus optimizes the extracted image features. The experimental results demonstrate that the F1-score of IDAN improves 1.62% and 1.98% compared to the baseline model on WHU dataset and LEVIR-CD dataset, respectively.

Abstract (translated)

URL

https://arxiv.org/abs/2208.08292

PDF

https://arxiv.org/pdf/2208.08292.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model LLM Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Robot Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot