Paper Reading AI Learner

Towards Practical Single-shot Phase Retrieval with Physics-Driven Deep Neural Network

2022-08-18 02:51:44
Qiuliang Ye, Li-Wen Wang, Daniel Pak-Kong Lun

Abstract

Phase retrieval (PR), a long-established challenge for recovering a complex-valued signal from its Fourier intensity-only measurements, has attracted considerable attention due to its widespread applications in digital imaging. Recently, deep learning-based approaches were developed that achieved some success in single-shot PR. These approaches require a single Fourier intensity measurement without the need to impose any additional constraints on the measured data. Nevertheless, vanilla deep neural networks (DNN) do not give good performance due to the substantial disparity between the input and output domains of the PR problems. Physics-informed approaches try to incorporate the Fourier intensity measurements into an iterative approach to increase the reconstruction accuracy. It, however, requires a lengthy computation process, and the accuracy still cannot be guaranteed. Besides, many of these approaches work on simulation data that ignore some common problems such as saturation and quantization errors in practical optical PR systems. In this paper, a novel physics-driven multi-scale DNN structure dubbed PPRNet is proposed. Similar to other deep learning-based PR methods, PPRNet requires only a single Fourier intensity measurement. It is physics-driven that the network is guided to follow the Fourier intensity measurement at different scales to enhance the reconstruction accuracy. PPRNet has a feedforward structure and can be end-to-end trained. Thus, it is much faster and more accurate than the traditional physics-driven PR approaches. Extensive simulations and experiments on a practical optical platform were conducted. The results demonstrate the superiority and practicality of the proposed PPRNet over the traditional learning-based PR methods.

Abstract (translated)

URL

https://arxiv.org/abs/2208.08604

PDF

https://arxiv.org/pdf/2208.08604.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot