Paper Reading AI Learner

LAB-Net: LAB Color-Space Oriented Lightweight Network for Shadow Removal

2022-08-27 15:34:15
Hong Yang, Gongrui Nan, Mingbao Lin, Fei Chao, Yunhang Shen, Ke Li, Rongrong Ji

Abstract

This paper focuses on the limitations of current over-parameterized shadow removal models. We present a novel lightweight deep neural network that processes shadow images in the LAB color space. The proposed network termed "LAB-Net", is motivated by the following three observations: First, the LAB color space can well separate the luminance information and color properties. Second, sequentially-stacked convolutional layers fail to take full use of features from different receptive fields. Third, non-shadow regions are important prior knowledge to diminish the drastic color difference between shadow and non-shadow regions. Consequently, we design our LAB-Net by involving a two-branch structure: L and AB branches. Thus the shadow-related luminance information can well be processed in the L branch, while the color property is well retained in the AB branch. In addition, each branch is composed of several Basic Blocks, local spatial attention modules (LSA), and convolutional filters. Each Basic Block consists of multiple parallelized dilated convolutions of divergent dilation rates to receive different receptive fields that are operated with distinct network widths to save model parameters and computational costs. Then, an enhanced channel attention module (ECA) is constructed to aggregate features from different receptive fields for better shadow removal. Finally, the LSA modules are further developed to fully use the prior information in non-shadow regions to cleanse the shadow regions. We perform extensive experiments on the both ISTD and SRD datasets. Experimental results show that our LAB-Net well outperforms state-of-the-art methods. Also, our model's parameters and computational costs are reduced by several orders of magnitude. Our code is available at this https URL.

Abstract (translated)

URL

https://arxiv.org/abs/2208.13039

PDF

https://arxiv.org/pdf/2208.13039.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot