Paper Reading AI Learner

Detection and Classification of Brain tumors Using Deep Convolutional Neural Networks

2022-08-28 18:24:22
Gopinath Balaji, Ranit Sen, Harsh Kirty

Abstract

Abnormal development of tissues in the body as a result of swelling and morbid enlargement is known as a tumor. They are mainly classified as Benign and Malignant. Tumour in the brain is fatal as it may be cancerous, so it can feed on healthy cells nearby and keep increasing in size. This may affect the soft tissues, nerve cells, and small blood vessels in the brain. Hence there is a need to detect and classify them during the early stages with utmost precision. There are different sizes and locations of brain tumors which makes it difficult to understand their nature. The process of detection and classification of brain tumors can prove to be an onerous task even with advanced MRI (Magnetic Resonance Imaging) techniques due to the similarities between the healthy cells nearby and the tumor. In this paper, we have used Keras and Tensorflow to implement state-of-the-art Convolutional Neural Network (CNN) architectures, like EfficientNetB0, ResNet50, Xception, MobileNetV2, and VGG16, using Transfer Learning to detect and classify three types of brain tumors namely - Glioma, Meningioma, and Pituitary. The dataset we used consisted of 3264 2-D magnetic resonance images and 4 classes. Due to the small size of the dataset, various data augmentation techniques were used to increase the size of the dataset. Our proposed methodology not only consists of data augmentation, but also various image denoising techniques, skull stripping, cropping, and bias correction. In our proposed work EfficientNetB0 architecture performed the best giving an accuracy of 97.61%. The aim of this paper is to differentiate between normal and abnormal pixels and also classify them with better accuracy.

Abstract (translated)

URL

https://arxiv.org/abs/2208.13264

PDF

https://arxiv.org/pdf/2208.13264.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot