Paper Reading AI Learner

Urban precipitation downscaling using deep learning: a smart city application over Austin, Texas, USA

2022-08-15 12:42:20
Manmeet Singh, Nachiketa Acharya, Sajad Jamshidi, Junfeng Jiao, Zong-Liang Yang, Marc Coudert, Zach Baumer, Dev Niyogi

Abstract

Urban downscaling is a link to transfer the knowledge from coarser climate information to city scale assessments. These high-resolution assessments need multiyear climatology of past data and future projections, which are complex and computationally expensive to generate using traditional numerical weather prediction models. The city of Austin, Texas, USA has seen tremendous growth in the past decade. Systematic planning for the future requires the availability of fine resolution city-scale datasets. In this study, we demonstrate a novel approach generating a general purpose operator using deep learning to perform urban downscaling. The algorithm employs an iterative super-resolution convolutional neural network (Iterative SRCNN) over the city of Austin, Texas, USA. We show the development of a high-resolution gridded precipitation product (300 m) from a coarse (10 km) satellite-based product (JAXA GsMAP). High resolution gridded datasets of precipitation offer insights into the spatial distribution of heavy to low precipitation events in the past. The algorithm shows improvement in the mean peak-signal-to-noise-ratio and mutual information to generate high resolution gridded product of size 300 m X 300 m relative to the cubic interpolation baseline. Our results have implications for developing high-resolution gridded-precipitation urban datasets and the future planning of smart cities for other cities and other climatic variables.

Abstract (translated)

URL

https://arxiv.org/abs/2209.06848

PDF

https://arxiv.org/pdf/2209.06848.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot