Paper Reading AI Learner

Improving Accuracy and Explainability of Online Handwriting Recognition

2022-09-14 21:28:14
Hilda Azimi, Steven Chang, Jonathan Gold, Koray Karabina

Abstract

Handwriting recognition technology allows recognizing a written text from a given data. The recognition task can target letters, symbols, or words, and the input data can be a digital image or recorded by various sensors. A wide range of applications from signature verification to electronic document processing can be realized by implementing efficient and accurate handwriting recognition algorithms. Over the years, there has been an increasing interest in experimenting with different types of technology to collect handwriting data, create datasets, and develop algorithms to recognize characters and symbols. More recently, the OnHW-chars dataset has been published that contains multivariate time series data of the English alphabet collected using a ballpoint pen fitted with sensors. The authors of OnHW-chars also provided some baseline results through their machine learning (ML) and deep learning (DL) classifiers. In this paper, we develop handwriting recognition models on the OnHW-chars dataset and improve the accuracy of previous models. More specifically, our ML models provide $11.3\%$-$23.56\%$ improvements over the previous ML models, and our optimized DL models with ensemble learning provide $3.08\%$-$7.01\%$ improvements over the previous DL models. In addition to our accuracy improvements over the spectrum, we aim to provide some level of explainability for our models to provide more logic behind chosen methods and why the models make sense for the data type in the dataset. Our results are verifiable and reproducible via the provided public repository.

Abstract (translated)

URL

https://arxiv.org/abs/2209.09102

PDF

https://arxiv.org/pdf/2209.09102.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model LLM Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Robot Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot