Paper Reading AI Learner

Approximate better, Attack stronger: Adversarial Example Generation via Asymptotically Gaussian Mixture Distribution

2022-09-24 08:57:10
Zhengwei Fang, Rui Wang, Tao Huang, Liping Jing

Abstract

Strong adversarial examples are the keys to evaluating and enhancing the robustness of deep neural networks. The popular adversarial attack algorithms maximize the non-concave loss function using the gradient ascent. However, the performance of each attack is usually sensitive to, for instance, minor image transformations due to insufficient information (only one input example, few white-box source models and unknown defense strategies). Hence, the crafted adversarial examples are prone to overfit the source model, which limits their transferability to unidentified architectures. In this paper, we propose Multiple Asymptotically Normal Distribution Attacks (MultiANDA), a novel method that explicitly characterizes adversarial perturbations from a learned distribution. Specifically, we approximate the posterior distribution over the perturbations by taking advantage of the asymptotic normality property of stochastic gradient ascent (SGA), then apply the ensemble strategy on this procedure to estimate a Gaussian mixture model for a better exploration of the potential optimization space. Drawing perturbations from the learned distribution allow us to generate any number of adversarial examples for each input. The approximated posterior essentially describes the stationary distribution of SGA iterations, which captures the geometric information around the local optimum. Thus, the samples drawn from the distribution reliably maintain the transferability. Our proposed method outperforms nine state-of-the-art black-box attacks on deep learning models with or without defenses through extensive experiments on seven normally trained and seven defence models.

Abstract (translated)

URL

https://arxiv.org/abs/2209.11964

PDF

https://arxiv.org/pdf/2209.11964.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot