Paper Reading AI Learner

Slimmable Networks for Contrastive Self-supervised Learning

2022-09-30 15:15:05
Shuai Zhao, Xiaohan Wang, Linchao Zhu, Yi Yang

Abstract

Self-supervised learning makes great progress in large model pre-training but suffers in training small models. Previous solutions to this problem mainly rely on knowledge distillation and indeed have a two-stage learning procedure: first train a large teacher model, then distill it to improve the generalization ability of small ones. In this work, we present a new one-stage solution to obtain pre-trained small models without extra teachers: slimmable networks for contrastive self-supervised learning (\emph{SlimCLR}). A slimmable network contains a full network and several weight-sharing sub-networks. We can pre-train for only one time and obtain various networks including small ones with low computation costs. However, in self-supervised cases, the interference between weight-sharing networks leads to severe performance degradation. One evidence of the interference is \emph{gradient imbalance}: a small proportion of parameters produces dominant gradients during backpropagation, and the main parameters may not be fully optimized. The divergence in gradient directions of various networks may also cause interference between networks. To overcome these problems, we make the main parameters produce dominant gradients and provide consistent guidance for sub-networks via three techniques: slow start training of sub-networks, online distillation, and loss re-weighting according to model sizes. Besides, a switchable linear probe layer is applied during linear evaluation to avoid the interference of weight-sharing linear layers. We instantiate SlimCLR with typical contrastive learning frameworks and achieve better performance than previous arts with fewer parameters and FLOPs.

Abstract (translated)

URL

https://arxiv.org/abs/2209.15525

PDF

https://arxiv.org/pdf/2209.15525.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot