Paper Reading AI Learner

From Face to Natural Image: Learning Real Degradation for Blind Image Super-Resolution

2022-10-03 08:09:21
Xiaoming Li, Chaofeng Chen, Xianhui Lin, Wangmeng Zuo, Lei Zhang

Abstract

Designing proper training pairs is critical for super-resolving the real-world low-quality (LQ) images, yet suffers from the difficulties in either acquiring paired ground-truth HQ images or synthesizing photo-realistic degraded observations. Recent works mainly circumvent this by simulating the degradation with handcrafted or estimated degradation parameters. However, existing synthetic degradation models are incapable to model complicated real degradation types, resulting in limited improvement on these scenarios, \eg, old photos. Notably, face images, which have the same degradation process with the natural images, can be robustly restored with photo-realistic textures by exploiting their specific structure priors. In this work, we use these real-world LQ face images and their restored HQ counterparts to model the complex real degradation (namely ReDegNet), and then transfer it to HQ natural images to synthesize their realistic LQ ones. Specifically, we take these paired HQ and LQ face images as inputs to explicitly predict the degradation-aware and content-independent representations, which control the degraded image generation. Subsequently, we transfer these real degradation representations from face to natural images to synthesize the degraded LQ natural images. Experiments show that our ReDegNet can well learn the real degradation process from face images, and the restoration network trained with our synthetic pairs performs favorably against SOTAs. More importantly, our method provides a new manner to handle the unsynthesizable real-world scenarios by learning their degradation representations through face images within them, which can be used for specifically fine-tuning. The source code is available at this https URL.

Abstract (translated)

URL

https://arxiv.org/abs/2210.00752

PDF

https://arxiv.org/pdf/2210.00752.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model LLM Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Robot Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot