Paper Reading AI Learner

PlaneDepth: Plane-Based Self-Supervised Monocular Depth Estimation

2022-10-04 13:51:59
Ruoyu Wang, Zehao Yu, Shenghua Gao

Abstract

Self-supervised monocular depth estimation refers to training a monocular depth estimation (MDE) network using only RGB images to overcome the difficulty of collecting dense ground truth depth. Many previous works addressed this problem using depth classification or depth regression. However, depth classification tends to fall into local minima due to the bilinear interpolation search on the target view. Depth classification overcomes this problem using pre-divided depth bins, but those depth candidates lead to discontinuities in the final depth result, and using the same probability for weighted summation of color and depth is ambiguous. To overcome these limitations, we use some predefined planes that are parallel to the ground, allowing us to automatically segment the ground and predict continuous depth for it. We further model depth as a mixture Laplace distribution, which provides a more certain objective for optimization. Previous works have shown that MDE networks only use the vertical image position of objects to estimate the depth and ignore relative sizes. We address this problem for the first time in both stereo and monocular training using resize cropping data augmentation. Based on our analysis of resize cropping, we combine it with our plane definition and improve our training strategy so that the network could learn the relationship between depth and both the vertical image position and relative size of objects. We further combine the self-distillation stage with post-processing to provide more accurate supervision and save extra time in post-processing. We conduct extensive experiments to demonstrate the effectiveness of our analysis and improvements.

Abstract (translated)

URL

https://arxiv.org/abs/2210.01612

PDF

https://arxiv.org/pdf/2210.01612.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot