Paper Reading AI Learner

Emotion Twenty Questions Dialog System for Lexical Emotional Intelligence

2022-10-05 17:20:26
Abe Kazemzadeh, Adedamola Sanusi, Huihui (Summer)Nie

Abstract

This paper presents a web-based demonstration of Emotion Twenty Questions (EMO20Q), a dialog game whose purpose is to study how people describe emotions. EMO20Q can also be used to develop artificially intelligent dialog agents that can play the game. In previous work, an EMO20Q agent used a sequential Bayesian machine learning model and could play the question-asking role. Newer transformer-based neural machine learning models have made it possible to develop an agent for the question-answering role. This demo paper describes the recent developments in the question-answering role of the EMO20Q game, which requires the agent to respond to more open-ended inputs. Furthermore, we also describe the design of the system, including the web-based front-end, agent architecture and programming, and updates to earlier software used. The demo system will be available to collect pilot data during the ACII conference and this data will be used to inform future experiments and system design.

Abstract (translated)

URL

https://arxiv.org/abs/2210.02400

PDF

https://arxiv.org/pdf/2210.02400.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot