Paper Reading AI Learner

Are Sample-Efficient NLP Models More Robust?

2022-10-12 17:54:59
Nelson F. Liu, Ananya Kumar, Percy Liang, Robin Jia

Abstract

Recent work has observed that pre-trained models have higher out-of-distribution (OOD) robustness when they are exposed to less in-distribution (ID) training data (Radford et al., 2021). In particular, zero-shot models (e.g., GPT-3 and CLIP) have higher robustness than conventionally fine-tuned models, but these robustness gains fade as zero-shot models are fine-tuned on more ID data. We study this relationship between sample efficiency and robustness -- if two models have the same ID performance, does the model trained on fewer examples (higher sample efficiency) perform better OOD (higher robustness)? Surprisingly, experiments across three tasks, 23 total ID-OOD settings, and 14 models do not reveal a consistent relationship between sample efficiency and robustness -- while models with higher sample efficiency are sometimes more robust, most often there is no change in robustness, with some cases even showing decreased robustness. Since results vary on a case-by-case basis, we conduct detailed case studies of two particular ID-OOD pairs (SST-2 -> IMDb sentiment and SNLI -> HANS) to better understand why better sample efficiency may or may not yield higher robustness; attaining such an understanding requires case-by-case analysis of why models are not robust on a particular ID-OOD setting and how modeling techniques affect model capabilities.

Abstract (translated)

URL

https://arxiv.org/abs/2210.06456

PDF

https://arxiv.org/pdf/2210.06456.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot