Paper Reading AI Learner

PAANet:Visual Perception based Four-stage Framework for Salient Object Detection using High-order Contrast Operator

2022-11-16 07:28:07
Yanbo Yuan, Hua Zhong, Haixiong Li, Xiao cheng, Linmei Xia

Abstract

It is believed that human vision system (HVS) consists of pre-attentive process and attention process when performing salient object detection (SOD). Based on this fact, we propose a four-stage framework for SOD, in which the first two stages match the \textbf{P}re-\textbf{A}ttentive process consisting of general feature extraction (GFE) and feature preprocessing (FP), and the last two stages are corresponding to \textbf{A}ttention process containing saliency feature extraction (SFE) and the feature aggregation (FA), namely \textbf{PAANet}. According to the pre-attentive process, the GFE stage applies the fully-trained backbone and needs no further finetuning for different datasets. This modification can greatly increase the training speed. The FP stage plays the role of finetuning but works more efficiently because of its simpler structure and fewer parameters. Moreover, in SFE stage we design for saliency feature extraction a novel contrast operator, which works more semantically in contrast with the traditional convolution operator when extracting the interactive information between the foreground and its surroundings. Interestingly, this contrast operator can be cascaded to form a deeper structure and extract higher-order saliency more effective for complex scene. Comparative experiments with the state-of-the-art methods on 5 datasets demonstrate the effectiveness of our framework.

Abstract (translated)

URL

https://arxiv.org/abs/2211.08724

PDF

https://arxiv.org/pdf/2211.08724.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot