Paper Reading AI Learner

Hypergraph Transformer for Skeleton-based Action Recognition

2022-11-17 15:36:48
Yuxuan Zhou, Chao Li, Zhi-Qi Cheng, Yifeng Geng, Xuansong Xie, Margret Keuper

Abstract

Skeleton-based action recognition aims to predict human actions given human joint coordinates with skeletal interconnections. To model such off-grid data points and their co-occurrences, Transformer-based formulations would be a natural choice. However, Transformers still lag behind state-of-the-art methods using graph convolutional networks (GCNs). Transformers assume that the input is permutation-invariant and homogeneous (partially alleviated by positional encoding), which ignores an important characteristic of skeleton data, i.e., bone connectivity. Furthermore, each type of body joint has a clear physical meaning in human motion, i.e., motion retains an intrinsic relationship regardless of the joint coordinates, which is not explored in Transformers. In fact, certain re-occurring groups of body joints are often involved in specific actions, such as the subconscious hand movement for keeping balance. Vanilla attention is incapable of describing such underlying relations that are persistent and beyond pair-wise. In this work, we aim to exploit these unique aspects of skeleton data to close the performance gap between Transformers and GCNs. Specifically, we propose a new self-attention (SA) extension, named Hypergraph Self-Attention (HyperSA), to incorporate inherently higher-order relations into the model. The K-hop relative positional embeddings are also employed to take bone connectivity into account. We name the resulting model Hyperformer, and it achieves comparable or better performance w.r.t. accuracy and efficiency than state-of-the-art GCN architectures on NTU RGB+D, NTU RGB+D 120, and Northwestern-UCLA datasets. On the largest NTU RGB+D 120 dataset, the significantly improved performance reached by our Hyperformer demonstrates the underestimated potential of Transformer models in this field.

Abstract (translated)

URL

https://arxiv.org/abs/2211.09590

PDF

https://arxiv.org/pdf/2211.09590.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot