Paper Reading AI Learner

Inversion-Based Creativity Transfer with Diffusion Models

2022-11-23 18:44:25
Yuxin Zhang, Nisha Huang, Fan Tang, Haibin Huang, Chongyang Ma, Weiming Dong, Changsheng Xu

Abstract

In this paper, we introduce the task of "Creativity Transfer". The artistic creativity within a painting is the means of expression, which includes not only the painting material, colors, and brushstrokes, but also the high-level attributes including semantic elements, object shape, etc. Previous arbitrary example-guided artistic image generation methods (e.g., style transfer) often fail to control shape changes or convey semantic elements. The pre-trained text-to-image synthesis diffusion probabilistic models have achieved remarkable quality, but they often require extensive textual descriptions to accurately portray attributes of a particular painting. We believe that the uniqueness of an artwork lies precisely in the fact that it cannot be adequately explained with normal language. Our key idea is to learn artistic creativity directly from a single painting and then guide the synthesis without providing complex textual descriptions. Specifically, we assume creativity as a learnable textual description of a painting. We propose an attention-based inversion method, which can efficiently and accurately learn the holistic and detailed information of an image, thus capturing the complete artistic creativity of a painting. We demonstrate the quality and efficiency of our method on numerous paintings of various artists and styles. Code and models are available at this https URL.

Abstract (translated)

URL

https://arxiv.org/abs/2211.13203

PDF

https://arxiv.org/pdf/2211.13203


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Attention Autonomous Bert Boundary_Detection Caption Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Drone Dynamic_Memory_Network Edge_Detection Embedding Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot