Paper Reading AI Learner

The applicability of transperceptual and deep learning approaches to the study and mimicry of complex cartilaginous tissues

2022-11-21 08:51:52
J. Waghorne, C. Howard, H. Hu, J. Pang, W.J. Peveler, L. Harris, O. Barrera

Abstract

Complex soft tissues, for example the knee meniscus, play a crucial role in mobility and joint health, but when damaged are incredibly difficult to repair and replace. This is due to their highly hierarchical and porous nature which in turn leads to their unique mechanical properties. In order to design tissue substitutes, the internal architecture of the native tissue needs to be understood and replicated. Here we explore a combined audio-visual approach - so called transperceptual - to generate artificial architectures mimicking the native ones. The proposed method uses both traditional imagery, and sound generated from each image as a method of rapidly comparing and contrasting the porosity and pore size within the samples. We have trained and tested a generative adversarial network (GAN) on the 2D image stacks. The impact of the training set of images on the similarity of the artificial to the original dataset was assessed by analyzing two samples. The first consisting of n=478 pairs of audio and image files for which the images were downsampled to 64 $\times$ 64 pixels, the second one consisting of n=7640 pairs of audio and image files for which the full resolution 256 $\times$ 256 pixels is retained but each image is divided into 16 squares to maintain the limit of 64 $\times$ 64 pixels required by the GAN. We reconstruct the 2D stacks of artificially generated datasets into 3D objects and run image analysis algorithms to characterize statistically the architectural parameters - pore size, tortuosity and pore connectivity - and compare them with the original dataset. Results show that the artificially generated dataset that undergoes downsampling performs better in terms of parameter matching. Our audiovisual approach has the potential to be extended to larger data sets to explore both how similarities and differences can be audibly recognized across multiple samples.

Abstract (translated)

URL

https://arxiv.org/abs/2211.14314

PDF

https://arxiv.org/pdf/2211.14314.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot