Paper Reading AI Learner

An Asynchronous Intensity Representation for Framed and Event Video Sources

2023-01-20 19:46:23
Andrew C. Freeman, Montek Singh, Ketan Mayer-Patel

Abstract

Neuromorphic "event" cameras, designed to mimic the human vision system with asynchronous sensing, unlock a new realm of high-speed and high dynamic range applications. However, researchers often either revert to a framed representation of event data for applications, or build bespoke applications for a particular camera's event data type. To usher in the next era of video systems, accommodate new event camera designs, and explore the benefits to asynchronous video in classical applications, we argue that there is a need for an asynchronous, source-agnostic video representation. In this paper, we introduce a novel, asynchronous intensity representation for both framed and non-framed data sources. We show that our representation can increase intensity precision and greatly reduce the number of samples per pixel compared to grid-based representations. With framed sources, we demonstrate that by permitting a small amount of loss through the temporal averaging of similar pixel values, we can reduce our representational sample rate by more than half, while incurring a drop in VMAF quality score of only 4.5. We also demonstrate lower latency than the state-of-the-art method for fusing and transcoding framed and event camera data to an intensity representation, while maintaining $2000\times$ the temporal resolution. We argue that our method provides the computational efficiency and temporal granularity necessary to build real-time intensity-based applications for event cameras.

Abstract (translated)

URL

https://arxiv.org/abs/2301.08783

PDF

https://arxiv.org/pdf/2301.08783.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot