Paper Reading AI Learner

Chain-of-Dictionary Prompting Elicits Translation in Large Language Models

2023-05-11 05:19:47
Hongyuan Lu, Haoyang Huang, Dongdong Zhang, Haoran Yang, Wai Lam, Furu Wei

Abstract

Large language models (LLMs) have shown surprisingly good performance in multilingual neural machine translation (MNMT) even when trained without parallel data. Yet, despite the fact that the amount of training data is gigantic, they still struggle with translating rare words, particularly for low-resource languages. Even worse, it is usually unrealistic to retrieve relevant demonstrations for in-context learning with low-resource languages on LLMs, which restricts the practical use of LLMs for translation -- how should we mitigate this problem? To this end, we present a novel method, CoD, which augments LLMs with prior knowledge with the chains of multilingual dictionaries for a subset of input words to elicit translation abilities for LLMs. Extensive experiments indicate that augmenting ChatGPT with CoD elicits large gains by up to 13x ChrF++ points for MNMT (3.08 to 42.63 for English to Serbian written in Cyrillic script) on FLORES-200 full devtest set. We further demonstrate the importance of chaining the multilingual dictionaries, as well as the superiority of CoD to few-shot demonstration for low-resource languages.

Abstract (translated)

大型语言模型(LLMs)在多语言神经网络机器翻译(MNMT)方面表现出令人惊讶地良好性能,即使在没有并行训练数据的情况下也是如此。然而,尽管训练数据量非常大,但它们仍然难以翻译罕见的单词,特别是对于资源有限的语言。更严重的是,通常难以在LLMs中获取与低资源语言上下文学习相关的相关演示,这限制了LLMs对翻译的实际用途——我们应该如何解决这个问题?为此,我们提出了一种新方法,称为CoD,它通过增加LLMs先前的知识,使用多语言词典链对输入单词的一小部分进行扩展,以提取LLMs的翻译能力。广泛的实验表明,通过与CoD相结合,ChatGPT在FLORES-200 full devtest set上的MNMT训练中获得了大量的增益,达到了13xChrF++ points(英语到塞尔维亚用西里尔字母书写的得分范围是3.08到42.63)。我们还证明了链式多语言词典的重要性,以及CoD对于低资源语言 few-shot演示的优越性。

URL

https://arxiv.org/abs/2305.06575

PDF

https://arxiv.org/pdf/2305.06575.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model LLM Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Robot Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot