Paper Reading AI Learner

Graph-level Anomaly Detection via Hierarchical Memory Networks

2023-07-03 04:57:53
Chaoxi Niu, Guansong Pang, Ling Chen

Abstract

Graph-level anomaly detection aims to identify abnormal graphs that exhibit deviant structures and node attributes compared to the majority in a graph set. One primary challenge is to learn normal patterns manifested in both fine-grained and holistic views of graphs for identifying graphs that are abnormal in part or in whole. To tackle this challenge, we propose a novel approach called Hierarchical Memory Networks (HimNet), which learns hierarchical memory modules -- node and graph memory modules -- via a graph autoencoder network architecture. The node-level memory module is trained to model fine-grained, internal graph interactions among nodes for detecting locally abnormal graphs, while the graph-level memory module is dedicated to the learning of holistic normal patterns for detecting globally abnormal graphs. The two modules are jointly optimized to detect both locally- and globally-anomalous graphs. Extensive empirical results on 16 real-world graph datasets from various domains show that i) HimNet significantly outperforms the state-of-art methods and ii) it is robust to anomaly contamination. Codes are available at: this https URL.

Abstract (translated)

Graph-level异常检测旨在识别与 graph 集合中大多数人所展现的结构异常和节点属性不同异常情况 graphs。一个主要挑战是学习正常模式在 graph 的精细和整体视图中的表现,以识别部分或整体异常的 graph。为了解决这个问题,我们提出了一种新的方法来称为Hierarchical Memory Networks(HimNet),该方法通过 graph 自动编码网络架构学习层级内存模块 - 节点和 graph 内存模块。节点级别的内存模块通过训练模型来建模节点之间的精细内部 graph 交互,以检测局部异常 graph。而 graph 级别的内存模块则专注于学习整体正常模式以检测全局异常 graph。两个模块同时优化以检测局部和全局异常的 graph。对 16 个不同领域的真实世界 graph 数据集进行广泛的实验结果表明,i) HimNet 显著优于当前最先进的方法,而 ii)它对于异常污染具有鲁棒性。代码可在 this https URL 找到。

URL

https://arxiv.org/abs/2307.00755

PDF

https://arxiv.org/pdf/2307.00755.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model LLM Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Robot Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot