Paper Reading AI Learner

The Paradox of Motion: Evidence for Spurious Correlations in Skeleton-based Gait Recognition Models

2024-02-13 09:33:12
Andy Cătrună, Adrian Cosma, Emilian Rădoi


Gait, an unobtrusive biometric, is valued for its capability to identify individuals at a distance, across external outfits and environmental conditions. This study challenges the prevailing assumption that vision-based gait recognition, in particular skeleton-based gait recognition, relies primarily on motion patterns, revealing a significant role of the implicit anthropometric information encoded in the walking sequence. We show through a comparative analysis that removing height information leads to notable performance degradation across three models and two benchmarks (CASIA-B and GREW). Furthermore, we propose a spatial transformer model processing individual poses, disregarding any temporal information, which achieves unreasonably good accuracy, emphasizing the bias towards appearance information and indicating spurious correlations in existing benchmarks. These findings underscore the need for a nuanced understanding of the interplay between motion and appearance in vision-based gait recognition, prompting a reevaluation of the methodological assumptions in this field. Our experiments indicate that "in-the-wild" datasets are less prone to spurious correlations, prompting the need for more diverse and large scale datasets for advancing the field.

Abstract (translated)




3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model LLM Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Robot Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot