Paper Reading AI Learner

Efficiently Leveraging Linguistic Priors for Scene Text Spotting

2024-02-27 01:57:09
Nguyen Nguyen, Yapeng Tian, Chenliang Xu


Incorporating linguistic knowledge can improve scene text recognition, but it is questionable whether the same holds for scene text spotting, which typically involves text detection and recognition. This paper proposes a method that leverages linguistic knowledge from a large text corpus to replace the traditional one-hot encoding used in auto-regressive scene text spotting and recognition models. This allows the model to capture the relationship between characters in the same word. Additionally, we introduce a technique to generate text distributions that align well with scene text datasets, removing the need for in-domain fine-tuning. As a result, the newly created text distributions are more informative than pure one-hot encoding, leading to improved spotting and recognition performance. Our method is simple and efficient, and it can easily be integrated into existing auto-regressive-based approaches. Experimental results show that our method not only improves recognition accuracy but also enables more accurate localization of words. It significantly improves both state-of-the-art scene text spotting and recognition pipelines, achieving state-of-the-art results on several benchmarks.

Abstract (translated)




3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model LLM Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Robot Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot