Paper Reading AI Learner

Encodings for Prediction-based Neural Architecture Search

2024-03-04 21:05:52
Yash Akhauri, Mohamed S. Abdelfattah

Abstract

Predictor-based methods have substantially enhanced Neural Architecture Search (NAS) optimization. The efficacy of these predictors is largely influenced by the method of encoding neural network architectures. While traditional encodings used an adjacency matrix describing the graph structure of a neural network, novel encodings embrace a variety of approaches from unsupervised pretraining of latent representations to vectors of zero-cost proxies. In this paper, we categorize and investigate neural encodings from three main types: structural, learned, and score-based. Furthermore, we extend these encodings and introduce \textit{unified encodings}, that extend NAS predictors to multiple search spaces. Our analysis draws from experiments conducted on over 1.5 million neural network architectures on NAS spaces such as NASBench-101 (NB101), NB201, NB301, Network Design Spaces (NDS), and TransNASBench-101. Building on our study, we present our predictor \textbf{FLAN}: \textbf{Fl}ow \textbf{A}ttention for \textbf{N}AS. FLAN integrates critical insights on predictor design, transfer learning, and \textit{unified encodings} to enable more than an order of magnitude cost reduction for training NAS accuracy predictors. Our implementation and encodings for all neural networks are open-sourced at \href{this https URL}{this https URL\_nas}.

Abstract (translated)

基于预测器的神经网络架构搜索(NAS)优化方法已经极大地增强了NAS。这些预测器的有效性很大程度上取决于编码神经网络架构的方法。虽然传统的编码方法使用邻接矩阵描述神经网络的图形结构,而新的编码方法则采用各种无监督预训练、零成本代理的方案,从神经网络的图结构编码到向量表示。在本文中,我们将分类并研究三种主要的神经编码:结构、学习到的和基于分数的。此外,我们将这些编码扩展到多个搜索空间,引入了统一编码,将NAS预测器扩展到多个搜索空间。我们的分析基于在NAS空间上超过1500万神经网络架构的实验,如NASBench-101(NB101)、NB201、NB301、网络设计空间(NDS)和TransNASBench-101。基于我们的研究,我们提出了预测器FLAN:FLow Attention for NAS。FLAN集成了关于预测器设计、迁移学习和统一编码的关键见解,以实现训练NAS准确度预测器超过一倍的成本降低。我们的实现和对所有神经网络的编码都是开源的,您可以点击以下链接访问:<https://this https URL>this https URL_nas。

URL

https://arxiv.org/abs/2403.02484

PDF

https://arxiv.org/pdf/2403.02484.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model LLM Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Robot Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot