Paper Reading AI Learner

Improving Event Definition Following For Zero-Shot Event Detection

2024-03-05 01:46:50
Zefan Cai, Po-Nien Kung, Ashima Suvarna, Mingyu Derek Ma, Hritik Bansal, Baobao Chang, P. Jeffrey Brantingham, Wei Wang, Nanyun Peng

Abstract

Existing approaches on zero-shot event detection usually train models on datasets annotated with known event types, and prompt them with unseen event definitions. These approaches yield sporadic successes, yet generally fall short of expectations. In this work, we aim to improve zero-shot event detection by training models to better follow event definitions. We hypothesize that a diverse set of event types and definitions are the key for models to learn to follow event definitions while existing event extraction datasets focus on annotating many high-quality examples for a few event types. To verify our hypothesis, we construct an automatically generated Diverse Event Definition (DivED) dataset and conduct comparative studies. Our experiments reveal that a large number of event types (200) and diverse event definitions can significantly boost event extraction performance; on the other hand, the performance does not scale with over ten examples per event type. Beyond scaling, we incorporate event ontology information and hard-negative samples during training, further boosting the performance. Based on these findings, we fine-tuned a LLaMA-2-7B model on our DivED dataset, yielding performance that surpasses SOTA large language models like GPT-3.5 across three open benchmarks on zero-shot event detection.

Abstract (translated)

现有的零样本事件检测方法通常在已知事件类型的数据集上训练模型,并对其进行未见过的事件定义的提示。这些方法产生了一些零散的成功,但通常未能达到预期效果。在这项工作中,我们旨在通过训练模型更好地遵循事件定义来提高零样本事件检测。我们假设,具有多样事件类型和定义的丰富数据集对于模型学习跟随事件定义至关重要。为了验证我们的假设,我们构建了一个自动生成的多样化事件定义(DivED)数据集,并进行了比较研究。我们的实验发现,大量事件类型(200)和多样事件定义可以显著提高事件提取性能;另一方面,性能并未随着每个事件类型的超过10个示例而扩展。超越扩展,我们在训练过程中引入了事件本体信息以及难负样本。这进一步提高了性能。基于这些发现,我们将DivED数据集上的LLaMA-2-7B模型进行了微调,在三个开放基准测试中实现了与SOTA大型语言模型GPT-3.5相当或更好的性能。

URL

https://arxiv.org/abs/2403.02586

PDF

https://arxiv.org/pdf/2403.02586.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model LLM Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Robot Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot