Paper Reading AI Learner

DynamicGlue: Epipolar and Time-Informed Data Association in Dynamic Environments using Graph Neural Networks

2024-03-17 23:23:40
Theresa Huber, Simon Schaefer, Stefan Leutenegger

Abstract

The assumption of a static environment is common in many geometric computer vision tasks like SLAM but limits their applicability in highly dynamic scenes. Since these tasks rely on identifying point correspondences between input images within the static part of the environment, we propose a graph neural network-based sparse feature matching network designed to perform robust matching under challenging conditions while excluding keypoints on moving objects. We employ a similar scheme of attentional aggregation over graph edges to enhance keypoint representations as state-of-the-art feature-matching networks but augment the graph with epipolar and temporal information and vastly reduce the number of graph edges. Furthermore, we introduce a self-supervised training scheme to extract pseudo labels for image pairs in dynamic environments from exclusively unprocessed visual-inertial data. A series of experiments show the superior performance of our network as it excludes keypoints on moving objects compared to state-of-the-art feature matching networks while still achieving similar results regarding conventional matching metrics. When integrated into a SLAM system, our network significantly improves performance, especially in highly dynamic scenes.

Abstract (translated)

在许多几何计算机视觉任务中,如SLAM,静态环境的假设是很常见的,但它限制了这些任务在高度动态场景中的适用性。由于这些任务依赖于在静态环境中确定输入图像之间的点对应关系,我们提出了一个基于图神经网络的稀疏特征匹配网络,旨在在具有挑战性的条件下实现鲁棒匹配,同时排除运动物体上的关键点。我们在图边上采用类似的注意力和聚合方案来增强关键点表示,与最先进的特征匹配网络类似,但补充了极化的图信息和大大减少了图的边数。此外,我们还引入了一种自监督训练方案,用于从仅处理视觉-inertial数据的动态环境中提取伪标签,用于图像对。一系列实验证明,与最先进的特征匹配网络相比,我们的网络在排除运动物体关键点的同时,仍然实现了与传统匹配指标类似的结果。当集成到SLAM系统中时,我们的网络在动态场景中的性能显著提高,尤其是在高度动态场景中。

URL

https://arxiv.org/abs/2403.11370

PDF

https://arxiv.org/pdf/2403.11370.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model LLM Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Robot Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot