Paper Reading AI Learner

Scene-Graph ViT: End-to-End Open-Vocabulary Visual Relationship Detection

2024-03-21 10:15:57
Tim Salzmann, Markus Ryll, Alex Bewley, Matthias Minderer

Abstract

Visual relationship detection aims to identify objects and their relationships in images. Prior methods approach this task by adding separate relationship modules or decoders to existing object detection architectures. This separation increases complexity and hinders end-to-end training, which limits performance. We propose a simple and highly efficient decoder-free architecture for open-vocabulary visual relationship detection. Our model consists of a Transformer-based image encoder that represents objects as tokens and models their relationships implicitly. To extract relationship information, we introduce an attention mechanism that selects object pairs likely to form a relationship. We provide a single-stage recipe to train this model on a mixture of object and relationship detection data. Our approach achieves state-of-the-art relationship detection performance on Visual Genome and on the large-vocabulary GQA benchmark at real-time inference speeds. We provide analyses of zero-shot performance, ablations, and real-world qualitative examples.

Abstract (translated)

视觉关系检测旨在在图像中识别物体及其关系。之前的方法通过向现有的物体检测架构中添加单独的关系模块或解码器来解决这个问题。这种分离增加了复杂度,并阻碍了端到端训练,这限制了性能。我们提出了一种简单的且高效的无解码器架构,用于开放词汇的视觉关系检测。我们的模型包括一个基于Transformer的图像编码器,它将物体表示为标记,并隐含地建模它们之间的关系。为了提取关系信息,我们引入了一个注意力机制,选择可能形成关系的物体对。我们提供了一种在混合物体和关系检测数据上训练此模型的单阶段 recipe。我们的方法在实时推理速度下实现了视觉基因组和大型词汇GQA基准中的最先进关系检测性能。我们还提供了关于零散性能、消融和真实世界质量实例的分析。

URL

https://arxiv.org/abs/2403.14270

PDF

https://arxiv.org/pdf/2403.14270.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model LLM Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Robot Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Time_Series Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot