Paper Reading AI Learner

AI-Generated Video Detection via Spatio-Temporal Anomaly Learning

2024-03-25 11:26:18
Jianfa Bai, Man Lin, Gang Cao

Abstract

The advancement of generation models has led to the emergence of highly realistic artificial intelligence (AI)-generated videos. Malicious users can easily create non-existent videos to spread false information. This letter proposes an effective AI-generated video detection (AIGVDet) scheme by capturing the forensic traces with a two-branch spatio-temporal convolutional neural network (CNN). Specifically, two ResNet sub-detectors are learned separately for identifying the anomalies in spatical and optical flow domains, respectively. Results of such sub-detectors are fused to further enhance the discrimination ability. A large-scale generated video dataset (GVD) is constructed as a benchmark for model training and evaluation. Extensive experimental results verify the high generalization and robustness of our AIGVDet scheme. Code and dataset will be available at this https URL.

Abstract (translated)

随着生成模型的进步,已经出现了高度逼真的人工智能(AI)生成的视频。恶意用户可以轻松地创建不存在的视频传播虚假信息。本文提出了一种通过捕获带两个分支时空卷积神经网络(CNN)的鉴定痕迹的有效人工智能生成视频(AIGVDet)方案。具体来说,分别学习两个ResNet子检测器来识别空间和光学流域中的异常。这样的子检测器的检测结果被融合以进一步增强识别能力。构建了一个大规模生成的视频数据集(GVD)作为模型训练和评估的基准。大量实验结果证实了我们AIGVDet方案的高通性和鲁棒性。代码和数据集将在这个链接处提供。

URL

https://arxiv.org/abs/2403.16638

PDF

https://arxiv.org/pdf/2403.16638.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model LLM Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Robot Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Time_Series Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot