Paper Reading AI Learner

Emotion Recognition from the perspective of Activity Recognition

2024-03-24 18:53:57
Savinay Nagendra, Prapti Panigrahi


Applications of an efficient emotion recognition system can be found in several domains such as medicine, driver fatigue surveillance, social robotics, and human-computer interaction. Appraising human emotional states, behaviors, and reactions displayed in real-world settings can be accomplished using latent continuous dimensions. Continuous dimensional models of human affect, such as those based on valence and arousal are more accurate in describing a broad range of spontaneous everyday emotions than more traditional models of discrete stereotypical emotion categories (e.g. happiness, surprise). Most of the prior work on estimating valence and arousal considers laboratory settings and acted data. But, for emotion recognition systems to be deployed and integrated into real-world mobile and computing devices, we need to consider data collected in the world. Action recognition is a domain of Computer Vision that involves capturing complementary information on appearance from still frames and motion between frames. In this paper, we treat emotion recognition from the perspective of action recognition by exploring the application of deep learning architectures specifically designed for action recognition, for continuous affect recognition. We propose a novel three-stream end-to-end deep learning regression pipeline with an attention mechanism, which is an ensemble design based on sub-modules of multiple state-of-the-art action recognition systems. The pipeline constitutes a novel data pre-processing approach with a spatial self-attention mechanism to extract keyframes. The optical flow of high-attention regions of the face is extracted to capture temporal context. AFEW-VA in-the-wild dataset has been used to conduct comparative experiments. Quantitative analysis shows that the proposed model outperforms multiple standard baselines of both emotion recognition and action recognition models.

Abstract (translated)




3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model LLM Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Robot Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot